Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.provenance | CONICET | - |
| dc.creator | Becher, Veronica Andrea | - |
| dc.creator | Bugeaud, Yann | - |
| dc.creator | Slaman, Theodore A. | - |
| dc.date | 2018-09-18T18:23:31Z | - |
| dc.date | 2018-09-18T18:23:31Z | - |
| dc.date | 2016-02 | - |
| dc.date | 2018-09-13T13:15:22Z | - |
| dc.date.accessioned | 2019-04-29T15:37:14Z | - |
| dc.date.available | 2019-04-29T15:37:14Z | - |
| dc.date.issued | 2016-02 | - |
| dc.identifier | Becher, Veronica Andrea; Bugeaud, Yann; Slaman, Theodore A.; On simply normal numbers to different bases; Springer; Mathematische Annalen; 364; 1-2; 2-2016; 125-150 | - |
| dc.identifier | 0025-5831 | - |
| dc.identifier | http://hdl.handle.net/11336/60110 | - |
| dc.identifier | CONICET Digital | - |
| dc.identifier | CONICET | - |
| dc.identifier.uri | http://rodna.bn.gov.ar:8080/jspui/handle/bnmm/297885 | - |
| dc.description | Let s be an integer greater than or equal to 2. A real number is simply normal to base s if in its base-s expansion every digit 0,1,…,s-1 occurs with the same frequency 1/s. Let S be the set of positive integers that are not perfect powers, hence S is the set {2,3,5,6,7,10,11,…}. Let M be a function from S to sets of positive integers such that, for each s in S, if m is in M(s) then each divisor of m is in M(s) and if M(s) is infinite then it is equal to the set of all positive integers. These conditions on M are necessary for there to be a real number which is simply normal to exactly the bases sm such that s is in S and m is in M(s). We show these conditions are also sufficient and further establish that the set of real numbers that satisfy them has full Hausdorff dimension. This extends a result of W. M. Schmidt (1961/1962) on normal numbers to different bases. | - |
| dc.description | Fil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina | - |
| dc.description | Fil: Bugeaud, Yann. Université de Strasbourg; Francia | - |
| dc.description | Fil: Slaman, Theodore A.. University of California at Berkeley; Estados Unidos | - |
| dc.format | application/pdf | - |
| dc.format | application/pdf | - |
| dc.language | eng | - |
| dc.publisher | Springer | - |
| dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/s00208-015-1209-9 | - |
| dc.relation | info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-015-1209-9 | - |
| dc.rights | info:eu-repo/semantics/restrictedAccess | - |
| dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | - |
| dc.source | reponame:CONICET Digital (CONICET) | - |
| dc.source | instname:Consejo Nacional de Investigaciones Científicas y Técnicas | - |
| dc.source | instacron:CONICET | - |
| dc.source.uri | http://hdl.handle.net/11336/60110 | - |
| dc.subject | NORMAL NUMBERS | - |
| dc.subject | SIMPLY NORMAL NUMBERS | - |
| dc.subject | Ciencias de la Computación | - |
| dc.subject | Ciencias de la Computación e Información | - |
| dc.subject | CIENCIAS NATURALES Y EXACTAS | - |
| dc.title | On simply normal numbers to different bases | - |
| dc.type | info:eu-repo/semantics/article | - |
| dc.type | info:eu-repo/semantics/publishedVersion | - |
| dc.type | info:ar-repo/semantics/articulo | - |
| Aparece en las colecciones: | CONICET | |
Ficheros en este ítem:
No hay ficheros asociados a este ítem.