Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.provenanceCONICET-
dc.creatorBraga, Jez Willian Batista-
dc.creatorAllegrini, Franco-
dc.creatorOlivieri, Alejandro Cesar-
dc.date2018-06-28T18:09:53Z-
dc.date2018-06-28T18:09:53Z-
dc.date2017-11-
dc.date2018-06-28T14:08:15Z-
dc.date.accessioned2019-04-29T15:39:07Z-
dc.date.available2019-04-29T15:39:07Z-
dc.date.issued2017-11-
dc.identifierBraga, Jez Willian Batista ; Allegrini, Franco; Olivieri, Alejandro Cesar; Maximum likelihood unfolded principal component regression with residual bilinearization (MLU-PCR/RBL) for second-order multivariate calibration; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 170; 11-2017; 51-57-
dc.identifier0169-7439-
dc.identifierhttp://hdl.handle.net/11336/50433-
dc.identifierCONICET Digital-
dc.identifierCONICET-
dc.identifier.urihttp://rodna.bn.gov.ar:8080/jspui/handle/bnmm/298587-
dc.descriptionA maximum likelihood model is described for performing second-order multivariate calibration with unfolded principal component regression with residual bilinearization (MLU-PCR/RBL). It differs from the conventional RBL models based on U-PCR or U-PLS (unfolded partial least-squares) in the incorporation of the measurement error information into both the U-PCR calibration and the RBL model phases. The error information is represented by the instrumental error covariance matrix. Simulations were made by adding correlated and proportional noise to synthetic systems consisting of one analyte in the presence of a calibrated and unexpected interferent, under different conditions of overlapping profiles, noise levels and noise types (correlated and proportional). The results show that MLU-PCR/RBL outperforms conventional RBL methods in prediction ability, as confirmed by a detailed study on validation samples through the average prediction error as a convenient figure of merit. Results obtained in experimental data set based on flow injection analysis and UV detection for determination of acetylsalicylic and ascorbic acids in pharmaceutical products also support the theoretical conclusions.-
dc.descriptionFil: Braga, Jez Willian Batista. Universidade do Brasília; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina-
dc.descriptionFil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina-
dc.descriptionFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina-
dc.formatapplication/pdf-
dc.formatapplication/pdf-
dc.languageeng-
dc.publisherElsevier Science-
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2017.09.016-
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743917302150-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/-
dc.sourcereponame:CONICET Digital (CONICET)-
dc.sourceinstname:Consejo Nacional de Investigaciones Científicas y Técnicas-
dc.sourceinstacron:CONICET-
dc.source.urihttp://hdl.handle.net/11336/50433-
dc.subjectERROR COVARIANCE MATRIX-
dc.subjectMAXIMUM LIKELIHOOD PRINCIPAL COMPONENT REGRESSION-
dc.subjectRESIDUAL BILINEARIZATION-
dc.subjectSECOND-ORDER MULTIVARIATE CALIBRATION-
dc.subjectOtras Ciencias Químicas-
dc.subjectCiencias Químicas-
dc.subjectCIENCIAS NATURALES Y EXACTAS-
dc.titleMaximum likelihood unfolded principal component regression with residual bilinearization (MLU-PCR/RBL) for second-order multivariate calibration-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.typeinfo:ar-repo/semantics/articulo-
Aparece en las colecciones: CONICET

Ficheros en este ítem:
No hay ficheros asociados a este ítem.