Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.creatorSchipani, Federico-
dc.creatorMiller, D. R.-
dc.creatorPonce, Miguel Adolfo-
dc.creatorAldao, Celso Manuel-
dc.creatorAkbar, S. A.-
dc.creatorMorris, P. A.-
dc.date2018-01-16T14:18:01Z-
dc.date2018-01-16T14:18:01Z-
dc.date2016-03-01-
dc.date2018-01-12T19:25:56Z-
dc.date.accessioned2019-04-29T15:55:24Z-
dc.date.available2019-04-29T15:55:24Z-
dc.identifierPonce, Miguel Adolfo; Akbar, S. A.; Schipani, Federico; Aldao, Celso Manuel; Morris, P. A.; Miller, D. R.; et al.; Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review; American Scientific Publishers; Reviews in Advanced Sciences and Engineering; 5; 1; 1-3-2016; 86-105-
dc.identifier2157-9121-
dc.identifierhttp://hdl.handle.net/11336/33388-
dc.identifierCONICET Digital-
dc.identifierCONICET-
dc.identifier.urihttp://rodna.bn.gov.ar:8080/jspui/handle/bnmm/305420-
dc.descriptionImpedance spectroscopy is essential in understanding the physical and chemical processes that affect theelectronic behavior of semiconducting metal oxide-based gas sensor materials, but is often overlooked oravoided by researchers because of the complexity of proper data interpretation. These metal oxide nanomaterialsare promising as resistive-type gas sensors because they have the potential to meet the critical need thathas developed for low-power, low-cost, portable gas sensors. However, the mechanisms that determine thesematerials? gas-sensing performance is still not understood well enough to advance the field toward bottom-updesign for specific applications. Direct current (DC) measurements give information on the device performancesuch as sensitivity, selectivity and response time. Alternating current (AC) measurements are a lesser-usedapproach that can give the same information, but also allow the varying contributions from the bulk, surfacesand interfaces, grain boundaries, electrode contacts and even substrate to be quantified, whether we work withpolycrystalline materials or single-crystal structures such as nanowires and nanorods. With this technique it ispossible to extract fundamental information about intergranular potential energy barrier height, width and donorconcentration changes in different atmospheres and temperatures. The equivalent circuit method is the mostcommon method of relating the impedance data to the physical system. However, the main weakness of thismethod is that the ideal circuit elements used in the fitting can be connected in many different ways to fit thesame signal. To properly apply this technique, the model development should consider both the impedancemeasurement and the physical and chemical characteristics of the system being studied. This review presentsa detailed description of impedance spectroscopy techniques for fundamental analysis of materials behavior ingas sensing applications, including proper data interpretation and types of fitting models commonly used, toenable researchers to better apply these techniques toward understanding of their materials systems.-
dc.descriptionFil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina-
dc.descriptionFil: Miller, D. R.. Ohio State University; Estados Unidos-
dc.descriptionFil: Ponce, Miguel Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina-
dc.descriptionFil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina-
dc.descriptionFil: Akbar, S. A.. Ohio State University; Estados Unidos-
dc.descriptionFil: Morris, P. A.. Ohio State University; Estados Unidos-
dc.formatapplication/pdf-
dc.formatapplication/pdf-
dc.formatapplication/pdf-
dc.languageeng-
dc.publisherAmerican Scientific Publishers-
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.aspbs.com/rase/contents_rase51.htm-
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1166/rase.2016.1109-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/-
dc.sourcereponame:CONICET Digital (CONICET)-
dc.sourceinstname:Consejo Nacional de Investigaciones Científicas y Técnicas-
dc.sourceinstacron:CONICET-
dc.subjectSemiconductors-
dc.subjectImpedance Spectroscopy-
dc.subjectCapacitance-
dc.subjectModels-
dc.subjectConduction mechanisms-
dc.subjectOxide-based gas sensors-
dc.subjectRecubrimientos y Películas-
dc.subjectIngeniería de los Materiales-
dc.subjectINGENIERÍAS Y TECNOLOGÍAS-
dc.titleElectrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.typeinfo:ar-repo/semantics/articulo-
Aparece en las colecciones: CONICET

Ficheros en este ítem:
No hay ficheros asociados a este ítem.