Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.creatorBlanco, Susana Alicia Ana-
dc.creatorGaray, Arturo-
dc.creatorCoulombie, Diego-
dc.date2016-01-22T20:05:20Z-
dc.date2016-01-22T20:05:20Z-
dc.date2013-05-
dc.date2016-03-30 10:35:44.97925-03-
dc.date.accessioned2019-04-29T15:56:05Z-
dc.date.available2019-04-29T15:56:05Z-
dc.identifierBlanco, Susana Alicia Ana; Garay, Arturo; Coulombie, Diego; Comparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction; Hindawi Publishing Corporation; ISRN Neurology; 2013; 5-2013; 287327-287327-
dc.identifier2090-5505-
dc.identifierhttp://hdl.handle.net/11336/3764-
dc.identifier.urihttp://rodna.bn.gov.ar:8080/jspui/handle/bnmm/305691-
dc.descriptionUnder the hypothesis that the uncontrolled neuronal synchronization propagates recruiting more and more neurons, the aim is to detect its onset as early as possible by signal analysis. This synchronization is not noticeable just by looking at the EEG, so mathematical tools are needed for its identification. Objective. The aim of this study is to compare the results of spectral entropies calculated in different frequency bands of the EEG signals to decide which band may be a better tool to predict an epileptic seizure. Materials and Methods. Invasive ictal records were used. We measured the Fourier spectrum entropy of the electroencephalographic signals 4 to 32 minutes before the attack in low, medium and high frequencies. Results. The high-frequency band shows a markedly rate of increase of the entropy, with positive slopes and low correlation coefficient. The entropy rate of growth in the low-frequency band is practically zero, with a correlation around 0.2 and mostly positive slopes. The mid-frequency band showed both positive and negative slopes with low correlation. Conclusions. The entropy in the high frequencies could be predictor, because it shows changes in the previous moments of the attack. Its main problem is the variability, which makes it difficult to set the threshold that ensures an adequate prediction.-
dc.descriptionFil: Blanco, Susana Alicia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano. Facultad de Ingenieria; Argentina-
dc.descriptionFil: Garay, Arturo. Centro de Educación Médica e Investigaciones Clínicas; Argentina-
dc.descriptionFil: Coulombie, Diego. Universidad Nacional de la Matanza. Instituto de Investigación y Desarrollo; Argentina-
dc.formatapplication/pdf-
dc.formatapplication/pdf-
dc.formatapplication/pdf-
dc.languageeng-
dc.publisherHindawi Publishing Corporation-
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.hindawi.com/isrn/neurology/2013/287327/10.1155/2013/287327-
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1155/2013/287327-
dc.relationinfo:eu-repo/semantics/altIdentifier/issn/2090-5505-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/-
dc.sourcereponame:CONICET Digital (CONICET)-
dc.sourceinstname:Consejo Nacional de Investigaciones Científicas y Técnicas-
dc.sourceinstacron:CONICET-
dc.subjectEPILEPSY-
dc.subjectDETACTION-
dc.subjectSIGNAL PROCESSING-
dc.subjectNeurociencias-
dc.subjectMedicina Básica-
dc.subjectCIENCIAS MÉDICAS Y DE LA SALUD-
dc.titleComparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.typeinfo:ar-repo/semantics/articulo-
Aparece en las colecciones: CONICET

Ficheros en este ítem:
No hay ficheros asociados a este ítem.